
IEEE Copyright Notice

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Digital Object Identifier (DOI): 10.1109/WIFS49906.2020.9360889

https://doi.org/10.1109/WIFS49906.2020.9360889

Fuzzing Framework for ESP32 Microcontrollers
Matthias Börsig , Sven Nitzsche , Max Eisele, Roland Gröll, Jürgen Becker∗, Ingmar Baumgart

FZI Research Center for Information Technology, Karlsruhe, Germany
Email: {boersig, nitzsche, eisele, groell, baumgart}@fzi.de

∗Institute for Information Processing Technology (ITIV), Karlsruhe Institute of Technology (KIT), Germany
Email: becker@kit.edu

Abstract—With the increasing popularity of the Internet of
Things (IoT), security issues in this domain have become a major
concern in recent years. In favor of a fast time to market and
low cost, security is often neglected during IoT development and
little effort has been spent to enhance security tools to support the
most common IoT architectures. Therefore, this work investigates
fuzzing, an emerging security analysis technique, on the popular
ESP32 IoT architecture. Instead of performing fuzzing directly
on the target IoT system, we propose a full-system emulator
that runs ESP32 firmware images and is able to perform fuzzing
several orders of magnitude faster than the actual system. Using
this emulator, we were able to fuzz a commercial IoT device with
more than 300 requests per second and identify a bug in it within
a few minutes. The developed framework can not only be used
for discovering security issues in released products, but also for
automated fuzzing tests during development.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) market has seen
a rapid growth with smart sensors and devices in industry and
smart home systems. According to Fortune Business Insights,
the global IoT market size was $251 billion in 2019 and
will reach over $1,463 billion by 2027 [1]. However, in this
rapidly evolving market security concerns have been mostly
neglected. According to the IoT Threat Report of 2020, 57%
of the examined IoT devices were vulnerable to medium- or
high-severity attacks [2]. To counteract this situation, existing
techniques to discover and avoid security vulnerabilities need
to be adopted to work on the embedded platforms commonly
used in IoT devices.

An emerging technique, developed for discovering security
vulnerabilities, is fuzzing [3]. Fuzzing attempts to crash a
program or a system by sending random inputs to it and moni-
toring the response. A detected crash most likely results from
a bug and may indicate a security vulnerability. In general,
fuzzing can be separated into two categories depending on
whether the target source code is available or not. If it is, then
the process is called whitebox fuzzing. Otherwise, if only the
binary code or a pre-programmed device is available, it is
called blackbox fuzzing.

Optimally, all possible inputs to a program or system
are tested during fuzzing for a comprehensive vulnerability
analysis. However, the number of possible inputs is typically
too large to be tested in a reasonable amount of time [4].

WIFS‘2020, December, 6-11, 2020, New York, USA. 978-1-
7281-9930-6/20/$31.00 ©2020 IEEE.

For this reason, whitebox fuzzing is preferable as the source
code and meta-information can help to narrow down the input
range and therefore the time required to achieve useful results.
On the other hand, many systems and applications are closed
source. In such scenarios, blackbox fuzzing can be combined
with reasonable assumptions on the functionality of a target
application [5], [6]. Alternatively, reverse engineering can
be used to analyze the target system prior to fuzzing. This
approach is called greybox fuzzing [7].

Even though fuzzing techniques have been implemented for
some popular microchip architectures [8], there is a growing
IoT development platform that has not been considered in
any work yet, the ESP32. This is, among others, due to
its uncommon processor architecture, Xtensa, which is not
supported by common tools for security vulnerability analysis.
The ESP32 microcontroller was released in 2016 and is built
to enable simple development of IoT applications with a short
time to market. It offers a number of built-in functions at a
very competitive price, including WiFi and Bluetooth commu-
nication, which are required for most modern IoT applications.
The ESP32 has been sold over 100 million times [9] and is
used in several commercial devices already.

This work investigates fuzzing of applications running on
ESP32 devices using different approaches. It focuses on
achieving high performance in order to not just provide
theoretical relevance but also practical usefulness.

II. OUR CONTRIBUTION

In this work, we present a high-performance fuzzing frame-
work for ESP32-based microcontrollers and demonstrate how
to use this framework to perform whitebox, greybox and
blackbox fuzzing on ESP32 binaries. To the best of our
knowledge, no other fuzzing tool supports the ESP32 platform.

The presented framework is based on the emulator QEMU
and combines an ESP32 fork1 (further referred to as ESP32-
QEMU) with a Honggfuzz implementation2, a QEMU-based
fuzzer (further referred to as QEMU-HONGFUZZ). We named
the resulting ESP32 fuzzing framework ESP32-QEMU-FUZZ.
The code can be found on GitHub3.

As proof of concept, we used ESP32-QEMU-FUZZ to fuzz
a commercial IoT device and were able to identify a bug in
the device within a few minutes.

1https://github.com/espressif/qemu
2https://github.com/thebabush/honggfuzz-qemu
3https://github.com/MaxCamillo/esp32-fuzzing-framework

1

https://orcid.org/0000-0002-6060-6026
https://orcid.org/0000-0002-3327-6957
https://github.com/espressif/qemu
https://github.com/thebabush/honggfuzz-qemu
https://github.com/MaxCamillo/esp32-fuzzing-framework

III. RELATED WORK

Muench et al. [8] pointed out challenges in fuzzing embed-
ded systems, like the lack of full-system emulators for fuzzing
targets and the unobservability of faults occurring in embedded
systems. The advantages of fuzzing embedded systems in an
emulator are the transparency of execution and thus the ability
to detect faults and collect code coverage.

Voss [10] presented a technique for fuzzing code that is hard
to reach under normal test conditions. The fuzzing of functions
is enabled by executing the code on the target until it is just
before the targeted processing function and then dumping the
entire state of the target at this very point. The state is then
transferred into an emulator where the generated test data gets
injected and the execution is continued. This technique has
also been built into the IoT fuzzing framework created by Gui
et al. [11]. They developed an additional analysis step that
can find relevant parts in the code automatically, prior to the
fuzzing process. However, in both works the technique was
implemented on top of the Unicorn [12] emulator, which does
not support the Xtensa architecture.

Hertz and Newsham [13] created a project to fuzz QEMU
system instances based on American Fuzzy Lop (AFL). Yet,
it uses an outdated version of QEMU and can therefore not be
combined with the ESP32-QEMU implementation in order to
fuzz ESP32 applications. Nevertheless, the project has served
as an inspiration for this work.

Bogad and Huber [14] used partial emulation to fuzz
firmware images of ESP8266, the predecessor of ESP32.
Finally, Li et al. [15] gave a good summary of security
vulnerability discovery and in particular on fuzzing, especially
coverage-guided fuzzing.

IV. CONCEPTION

Fuzzing consists of three steps – input generation, target
execution and fault detection – which are explained below.

A. Fault Detection

First of all, the behavior of the ESP32 on memory corruption
needs to be investigated. We wrote a test application4 that
processes TCP requests over the WiFi interface and allows
triggering the five main causes of memory corruption (stack
and heap buffer overflow, null pointer dereference, double free,
and unsafe use of printf), according to [8], in a controlled
manner. The following behavior on the triggered faults could
be observed.

Writing outside the boundaries of an allocated buffer is
possible on the ESP32. Buffers on the stack will most likely be
located in the neighborhood of return addresses while buffers
on the heap can also be located beside function pointers.
Overwriting one of these will result in a crash of the device
if it gets dereferenced. If no important values are overwritten,
the ESP32 will not crash and the fault may not be recognized.

With control over the first argument of a printf function,
it is possible to write to distinct addresses on the stack. If

4Test application is available at: https://github.com/MaxCamillo/esp32-fuz
zing-framework/blob/master/example esp32 server/main/tcp server.c

these addresses point to invalid memory locations, the device
will crash and the memory corruption is observable.

On dereferencing a null pointer and freeing an already deal-
located memory chunk, the ESP32 always crashes. As a result,
such causes of memory corruption are always observable.

It is important to note that the fuzzing process does not
have to recognize a memory corruption at its first occurrence.
During the fuzzing process, a large number of inputs are
tested and a present bug, which leads to a memory corruption,
will most likely be triggered by various inputs. It is therefore
relied on observing a crash of the system to detect memory
corruptions.

To improve the detection of those memory corruptions,
tools like AddressSanitizer or heuristics via emulation could
be utilized, as shown in [8].

B. Target Execution with Fuzzing-Hooks

Because the ESP32 is built to serve IoT applications, the
input data is normally received through the WiFi interface.
Therefore, when fuzzing is performed on the actual device,
sending the fuzzing data via WiFi is the most convenient way.
This is done by a fuzzing-hook, which needs to repeatedly
fetch the fuzzing input data from the Honggfuzz interface and
send it to the target’s network address. It also must verify that
the target has sent a response to the request. If no response
is received, it is assumed that the target has crashed and the
fuzzing-hook must send a fault signal to the fuzzer.

Some targets may require an additional liveness check to
investigate if the target has not been crashed by the request.
Therefore, after sending the request that contains the fuzzing
input data, a request that is known to be responded by the
target is additionally sent to the device.

C. Coverage-Guided Input Generation

For the input generation, the mutation mechanism from
Honggfuzz is used. It can either be used by only mutating the
provided seed inputs, or by additionally respecting the code
coverage information of the target.

1) Compiler-Generated Instrumentation: The ESP32 com-
piler supports instrumenting the code in order to generate code
coverage data, which is then saved to the device memory
during runtime. To handle the generated coverage data, the
fuzzing-hook needs to download the code coverage data, using
a JTAG debugging connection after each tested input, and
redirecting it to the fuzzer. The communication flow is shown
in figure 1. Unfortunately, only the executed basic blocks are
logged by using this method of code instrumentation.

2) Binary Rewriting Instrumentation: To enable coverage-
guided greybox fuzzing, the binary code of the application
could be modified in order to report executed basic blocks
or even compare instruction parameters. Under certain condi-
tions, it is possible to translate the entire binary code back
into assembler code and insert instructions that measure the
code coverage. Unfortunately, the data fields and instructions
in ESP32’s binaries are interleaved such that it is impossible to
distinguish between them effectively. Also, the dummy bytes

2

https://github.com/MaxCamillo/esp32-fuzzing-framework/blob/master/example_esp32_server/main/tcp_server.c
https://github.com/MaxCamillo/esp32-fuzzing-framework/blob/master/example_esp32_server/main/tcp_server.c

Honggfuzz Fuzzing-Hook ESP32

JTAG
Adapter

Input Data
Input Data

Liveness Check?

Response?

USB JTAG
Code Coverage

Fault Signal?

Coverage Data

Shared Memory WiFi

Fig. 1. Coverage-Guided Whitebox Fuzzing for ESP32 applications

for the code alignment make disassembling difficult. It is
therefore not possible to translate an entire binary firmware
image for the ESP32 back into assembly code, without huge
manual efforts.

3) Code Coverage by Emulating: When running an appli-
cation in an emulator, access to all meta-information of the
execution is possible. This transparency can be used to inter-
cept the program counter and the parameters from compare
instructions to calculate a fine-grained code coverage. Using a
full-system emulator for fuzzing is a highly discussed subject
in the community in terms of performance. Some researchers
state that the performance of using a full-system emulator is
between 2-5 times [16] and up to 10 times [7] worse than the
performance of the actual device. In [8], it is shown that an
emulator can even be faster than the actual device, especially
for embedded devices. Another great advantage of fuzzing in
an emulator certainly is the ease of scalability to multiple
cores, with multiple instances of the emulator.

V. IMPLEMENTATION

A. Blackbox Fuzzing on ESP32 Applications

Blackbox fuzzing without code coverage consideration on
the actual device is the simplest method for fuzzing ESP32
applications. Even though not promising, it is implemented in
order to set a performance baseline.

Some services wait for certain symbols at the end of the
input data until the processing starts. A header of an HTTP
request, for example, ends with two new line characters. If
these characters are not received, the processing of the data
gets stuck, which would block the whole fuzzing process.
Therefore, these characters must be identified and appended
to the generated input data by the fuzzing-hook in order to
avoid deadlocks.

The crash detection of the target must also be adapted to
the actual service. On connection-oriented services, like TCP,
it is sufficient to observe whether the connection has been
terminated correctly or if a response from the target has been
received. For connectionless services, like UDP, more complex
methods have to be used to check if the target has been
crashed by processing the input data. This can be done with
liveness checks after each tested input. However, as shown
in [8], liveness checks are not always a reliable option because

the embedded systems tend to reboot extremely quickly after
crashes and hence the liveness check might even be responded
correctly after the target has rebooted. A more sophisticated
method for observing crashes on the target is intercepting crash
signals with a serial connection to the target. When crashing,
the ESP32 always prints a small fault message followed by
a reboot message to the serial connection. Intercepting this
reboot signal from the serial connection could also be used as
a reliable option to observe crashes.

With this method a simple HTTP server application for the
ESP32 could be fuzzed with a throughput of about 30-40
requests per second. This fuzzing process is quite inefficient
and will probably not trigger any bugs.

B. Whitebox Fuzzing with Compiler Instrumented Code

Considering the code coverage of a tested input for the input
generation is necessary in order to increase the efficiency of the
fuzzing process. The easiest way to gather the code coverage is
to utilize compiler-generated code instrumentation; this is done
by recompiling each source file that should be instrumented
with the option --coverage passed to the compiler. The
compiler thereby adds code to each basic block, which counts
the number of times it is executed during runtime.

The coverage data is then transferred from the device into
Honggfuzz by using a JTAG connection. Honggfuzz creates a
large bitmap in the shared memory in which the addresses
of executed basic blocks are stored. Each bit in this bitmap
corresponds to one address. Initially, all bits are set to zero.
The first time a basic block is executed the corresponding bit
is set to one. Honggfuzz can detect this bit flip and will store
the triggering input as an additional seed in the input folder.

Using such compiler-generated coverage data slows down
the fuzzing process by a factor of 10, reaching only about
4 requests per second on fuzzing the simple HTTP server
application. Furthermore, only the executed basic blocks are
examined by this method and no fine-grained code coverage
can be generated. However, the biggest drawback for compiler-
generated coverage data is that the source code has to be
available.

C. Whitebox Fuzzing with ESP32-QEMU-FUZZ

QEMU-HONGFUZZ examines the code coverage of an
emulated user application and directs it to Honggfuzz. This
modified version of QEMU has been merged into the ESP32-
QEMU implementation provided by Espressif. Because both
implementations are based on nearly the same version of
QEMU and have modifications in different areas of the code,
merging the two code bases has been straightforward. The
result is ESP32-QEMU-FUZZ, a version of QEMU that allows
fuzzing of ESP32 applications.

To enable coverage-guided fuzzing, it is required to examine
which basic blocks have been executed, as explained in
section IV-C. The binary translation engine of QEMU groups
instructions into basic blocks, to allow their execution without
interruption. This grouping mechanism is reused to determine
basic blocks for the fuzzing process. By using an emulator,

3

even more fine-grained code coverage data can be obtained by
considering the parameters of compare instructions. Therefore,
the two parameters of a compare instruction are intercepted
during the translation of the machine instruction within the em-
ulator. The ESP32 architecture provides the functions strcmp
and strcasecmp, which compare two strings either exactly
or by ignoring the cases of the chars. All string compare
functions are located at fixed addresses in the unmodifiable
ROM of the ESP32. This allows to intercept the parameters
of the functions when such a function is called within the
emulator. The code from Honggfuzz needs to be enhanced to
additionally handle these parameters. The parameters and the
address from which the string compare functions are called
can thereby be passed to Honggfuzz in the same way as the
parameters of the normal compare instructions.

The ESP32-QEMU implementation does not support em-
ulating the integrated WiFi module, so neither does ESP32-
QEMU-FUZZ. As a workaround, QEMU offers an Ethernet
interface to connect the emulator to the host’s network. How-
ever, the application needs to be linked against the provided
Ethernet driver, which makes this way of communicating to
the application exclusively available to whitebox scenarios. In
order to redirect the input data from the fuzzer to the host’s
network address, a fuzzing-hook is created. It is responsible
for iteratively fetching the fuzzing input data from Honggfuzz
and redirect it to the correct network address.

For the fault detection, it is sufficient to intercept the HALT
interrupt, which is triggered when the ESP32 emulator crashes.

This setup offers a great way for whitebox fuzzing of ESP32
applications. For our TCP test application we could achieve
around 80 requests per second using a single thread on a
consumer laptop. It can therefore be assumed that the ESP32-
QEMU-FUZZ implementation is faster than the actual device,
regarding the whole network and data processing. Addition-
ally, fine-grained code coverage of each input is considered
for the input generation, which increases the efficiency of the
fuzzing process. It is easily possible to scale up this method
by using multiple instances. In this case, every instance needs
to be bound to its own network interface.

With this whitebox fuzzing implementation in QEMU, it
is possible to apply automated fuzz tests within modern
continuous integration and continuous delivery development
cycles. For this, the application can be compiled separately
with the required Ethernet driver and optional stub methods
for hardware parts that cannot be emulated.

D. Blackbox and Greybox Fuzzing with ESP32-QEMU-FUZZ

As mentioned before, ESP32-QEMU does not support WiFi.
Thus, it is not possible to interact with an application of a
blackbox firmware image that uses WiFi in the emulator. Only
applications that run without WiFi can be blackbox-fuzzed.
Since ESP32-based microcontrollers are often used precisely
because of the cheap WiFi module, this is a severe issue. A
possibility to solve this issue would be to emulate the WiFi
functionality within ESP32-QEMU. For a proper implemen-
tation of the WiFi functionality, detailed knowledge of the

hardware is required. Unfortunately, the WiFi drivers from the
IoT Development Framework (IDF) are closed source and there
is no documentation of the corresponding WiFi hardware in the
manual. A lot of manual reverse engineering would be required
in order to examine the internal communication mechanisms.
Therefore, we decided to not implement the WiFi functionality,
but instead take a greybox approach to fuzz firmware images.

To enable greybox binary fuzzing, the technique from [10]
was implemented. It allows to bypass the data input through
network interfaces. This is done by saving a state of the actual
device after receiving the data and then transferring this state to
the emulator. It is sufficient for the fuzzing process to run the
code from the beginning of the data processing code until the
end of it. Doing so additionally speeds up the fuzzing process,
as irrelevant parts are no longer executed. Therefore, the entry
and exit points of the data processing have to be found within
the firmware. However, almost any random bit string of two
and three bytes represents a valid instruction in the Xtensa
instruction set. As a result, even professional disassembling
programs like IDA Pro cannot properly disassemble the Xtensa
code. Hence, finding the entry and exit points requires a lot
of manual effort.

One approach to find those regions in the code is to use the
step-by-step execution function of GNU Debugger (GDB). A
deep understanding of the code is needed and can be acquired
by using breakpoints and observing the execution. The goal is
to find data processing functions and code sections which are
good candidates for fuzzing. When the part of the code that is
to be fuzzed does not end on a single location, multiple exit
points have to be defined. Also, the memory region in which
the input data is located must be identified by hand.

When suitable entry and exit points have been found, the
state of the target device when reaching the entry point has to
be dumped. The state of the ESP32 consists of the values of the
16 registers, the program counter, and the 512KiB of static
RAM. All of these data can be retrieved by using a JTAG
debugging connection and can therefore be dumped easily.
To apply this dumped state into the emulator instance, the
QEMU implementation had to be modified in order to load
the memory image to the appropriate memory region and set
all register values accordingly. The input data is then located
in the memory of the emulator and can be altered.

To allow a proper continuation of the execution in the
emulator, the state must not be loaded before the initialization
routines of the firmware. Rather, the firmware must first
have run through all important initialization routines to make
sure that required modules do work. The point at which the
initialization of the operating system is completed is called
setup point and has to be identified manually, too. A suitable
method to find the setup point of a firmware is to execute the
firmware for a few seconds in the emulator and then stop it
with the debugger. Usually, the device is now in an idle state
and waits for inputs.

On each fuzzing iteration, the input data is overwritten
by the input data generated by the fuzzer and the length
value is corrected correspondingly. When one of the exit

4

Start
Emu-
lator

Run
till

setup
point

Load
State

Fo
rk

Wait
for

Child
to Exit

Inject
Input
Data

Run
till

Exit
Point

Exit

parent

child

Fig. 2. Fork-Join fuzzing process

TABLE I
COMPARISON OF FUZZING ATTEMPTS ON A INTEL I7-6600U BASED

CONSUMER LAPTOP USING ONE CORE

Test Requests per Second

Blackbox Fuzzing on ESP32 Applications 40
Whitebox Fuzzing with Compiler Instrumented Code 4
Whitebox Fuzzing with ESP32-QEMU-FUZZ 80
Greybox Fuzzing with ESP32-QEMU-FUZZ 320

points is reached, the procedure is started from the beginning.
Therefore, each tested input is executed while the emulator is
in the exact same state and only the input data differs.

Reloading the whole state of the target after each tested
input obviously comes with a big performance penalty. There-
fore, a technique called Fork Server is implemented.

On UNIX systems the fork call is realized with the copy-on-
write policy. As a result, the newly created process shares the
memory with the parent process and the whole memory page
gets copied if one of the processes executes a write operation.
The fork-join fuzzing process is illustrated in figure 2.

The behavior of the fork call can be used in the fuzzing
process to ensure that the same state of the emulator is present
in each new fuzzing iteration. Therefore, a child process
is created right before the input data gets injected into the
emulator’s state. The parent process waits for the child process
to be finished by using the join system call. By considering the
return code of the child process, it can be determined whether
the child process has terminated with a crash, or because an
exit point was reached. Finally, the next child process with
newly generated input from the fuzzer can be spawned. Using
the fork-join mechanism drastically reduces the performance
penalty of reloading the device state each iteration.

VI. EVALUATION

A. Fuzzing the TCP Test Application

As mentioned in section IV-A, we used a TCP test applica-
tion to verify the ESP32-QEMU-FUZZ implementation. With
coverage-guided whitebox fuzzing it was possible to find input
combinations to trigger all implemented bugs within a few
hours. The achieved requests per second for each test is shown
in Table I.

B. Greybox Fuzzing the LIFX Mini

To prove the effectiveness of the implemented fuzzing
method, it is tested against a commercial product. The LIFX

Fig. 3. A disassembled LIFX Mini smart light bulb.

Mini is a smart light bulb, which contains an ESP32 as control
unit. It is a typical IoT consumer device that gets controlled via
WiFi. For this, a smartphone app is offered that can manage
multiple smart light bulbs at once. As expected for commercial
devices, no source code is available.

1) Preparation of the Target: At the first examination of
the target device, we discovered that the JTAG port has
been deactivated. The permanent deactivation of the JTAG
port is a security feature of the ESP32, which cannot be
undone. Therefore, the firmware of the light bulb needed to
be transferred to an ESP32 development board, in order to be
able to use the JTAG connection. The 4MB flash memory of
the ESP32, which contains the firmware, can be dumped via a
serial connection. To reach the pins for the serial connection,
the light bulb had to be opened, as shown in figure 3.

Next, the firmware is dumped using the esptool provided
by IDF. The firmware image of about 750 kB is then written
to the flash memory of the ESP32 developer board, which is
connected to a JTAG adapter. This allows to set breakpoints
at arbitrary locations and read the state of the device.

2) Fuzzing the Initial Configuration Process: For the initial
configuration, the light bulb operates its own WiFi access
point. The smartphone app makes the phone to join this access
point and to establish a secure TLS channel to the light bulb
on TCP port number 56700. The credentials of the user’s WiFi
access point are then exchanged over the secure channel. After
the initial configuration, the light bulb joins the user’s WiFi
access point and further control commands are transferred via
this network. The focus of the first fuzzing approach of the
light bulb will be on this initial configuration process.

At first, the entry and exit points had to be found using
GDB. Then, the dumped device state and metadata had to be
provided to the ESP32 fuzzing framework. As a result, several
crashes could be observed within a few minutes. Two different
ways were found to force the device into infinite looping,
whereby the device is not usable for about 30 seconds. After
this amount of time, the device reboots itself. This bug could
be exploited for Denial of Service (DoS) attacks in order to
prevent the device from being used. Furthermore, an input was
found that caused the device to crash and restart. However, the
restart seems to be triggered by a built-in reboot command. So
far, no memory corruptions and fault signals could be observed
by the manual analysis of the crash.

After about 45 minutes, the fuzzing process no longer
explored new code areas. Even running the fuzzing process for

5

another 72 hours did not result in any new code coverage. It
can therefore be assumed that most of the accessible code parts
have been covered in the first 45 minutes. This would prove
the effectiveness of the fine-grained code coverage gathering.

3) Fuzzing on Open TCP Port: The light bulb also offers
an HTTP server at TCP port number 80 after initialization.
After a few minutes of fuzzing, a null pointer exception could
be found. The exception results from an unsafe use of the
strchr library function, which is located in the unmodifiable
ROM of the ESP32. If the character is not contained in the
string, this function returns a pointer to a demanded character
within a string or a null pointer. In this case, the returned
pointer was not verified but dereferenced, and thereby caused
the exception.

As mentioned before, exploitation of bugs on the Xtensa
architecture has not yet been investigated heavily and no
exploitation of null pointer exceptions has been reported
yet. However, several possibilities have been found on other
architectures to exploit these kinds of exceptions. Null pointer
dereferences are listed in the 2019 CWE Top 25 Most Danger-
ous Software Errors [17] in the 14th place. This bug should
therefore be considered as a potential serious security vulner-
ability. The discovering of this bug shows the effectiveness of
the coverage guided greybox fuzzing.

VII. LIMITATIONS AND FUTURE WORK

The modified version of QEMU that was developed in this
work is limited to ESP32. It could be extended to all embedded
systems that are supported by QEMU. This would allow to
utilize the implemented methods for a lot more microcontroller
architectures. However, since QEMU does not support all
available architectures, the ability to fully emulate arbitrary
firmware images, as mentioned in [8], still remains an open
problem.

VIII. CONCLUSION

For some IoT development platforms fuzzing techniques
have been developed in the past. Prior to this work, however,
there were no published tools for IoT devices built upon
the ESP32 platform. Different techniques for fuzzing ESP32
applications in various scenarios have been implemented and
evaluated in this work. The two methods that are particularly
effective rely on fuzzing in an emulator instead of running
on the actual device. For instance, whitebox fuzzing enables
automated continuous testing during the application develop-
ment process. This method of fuzzing ESP32 applications
fits seamlessly into a modern agile application development
process. The greybox fuzzing option of the framework pro-
vides a powerful tool for security analysts. It can be utilized
to perform fuzzing on parts of the firmware that appear
vulnerable to a security analyst. This method was tested
against a commercial device and could find bugs in little time.
The null pointer dereference error, which could be found in the
tested commercial device, is a potential security vulnerability.
Currently, no method to exploit this type of error on the ESP32
has been published yet. But with the increasing popularity of

the ESP32, it is just a matter of time until the financial benefit
for attackers is high enough to focus on this kind of exploits.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry
of Education and Research within the framework of the project
KASTEL SKI in the Competence Center for Applied Security
Technology (KASTEL).

REFERENCES

[1] Fortune Business Insights, “Internet of Things (IoT) Market Size, Share
and Industry Analysis By Platform (Device Management, Application
Management, Network Management), By Software & Services (Soft-
ware Solution, Services), By End-Use Industry (BFSI, Retail, Govern-
ments, Healthcare, Others) And Regional Forecast, 2020-2027,” 2020.

[2] Unit 42, “2020 unit 42 iot threat report,” https://unit42.paloaltonetwor
ks.com/iot-threat-report-2020, 2020.

[3] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[4] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical
results and practical implications,” IEEE Transactions on Software
Engineering, vol. 38, no. 2, pp. 258–277, 2011.

[5] M. Böhme and S. Paul, “A probabilistic analysis of the efficiency of au-
tomated software testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 4, pp. 345–360, 2015.

[6] M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural
byte sieve for fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

[7] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-
afl: high-throughput greybox fuzzing of iot firmware via augmented
process emulation,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1099–1114.

[8] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices.” in NDSS, 2018.

[9] Espressif, “Espressif achieves the 100-million target for iot chip ship-
ments,” https://www.espressif.com/en/media overview/news/espressif-a
chieves-100-million-target-iot-chip-shipments, 2018.

[10] N. Voss, “afl-unicorn: Part 2 fuzzing the ’unfuzzable’,” https://hacker
noon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5, 11
2017.

[11] Z. Gui, H. Shu, F. Kang, and X. Xiong, “Firmcorn: Vulnerability-
oriented fuzzing of iot firmware via optimized virtual execution,” IEEE
Access, vol. 8, pp. 29 826–29 841, 2020.

[12] N. A. Quynh and D. H. Vu, “Unicorn-the ultimate cpu emulator,” https:
//www.unicorn-engine.org/, 2015.

[13] J. Hertz and T. Newsham, “Triforceafl,” https://github.com/nccgroup/Tr
iforceAFL, 6 2016.

[14] K. Bogad and M. Huber, “Harzer roller: Linker-based instrumentation
for enhanced embedded security testing,” in Proceedings of the 3rd
Reversing and Offensive-Oriented Trends Symposium, ser. ROOTS’19.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3375894.3375897

[15] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, p. 6, 2018.

[16] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, “Ptfuzz: Guided fuzzing
with processor trace feedback,” IEEE Access, vol. 6, pp. 37 302–37 313,
2018.

[17] M. Corporation, “2019 cwe top 25 most dangerous software errors,”
https://cwe.mitre.org/top25/archive/2019/2019 cwe top25.html, 2019.

6

https://unit42.paloaltonetworks.com/iot-threat-report-2020
https://unit42.paloaltonetworks.com/iot-threat-report-2020
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://doi.org/10.1145/3375894.3375897
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

